Blue Carbon

Seagrass meadows are metabolic hot spots in coastal waters that sequester and store large amounts of carbon that can remain buried in sediments for decades to centuries if meadows are not disturbed or degraded. This ‘blue carbon’ sequestration is one of the nature-based solutions to combat climate change. Marine heat waves are now threatening seagrass and the blue carbon stored in their sediments. Quantifying seagrass carbon stocks and the long-term rates of net carbon accumulation is key to establishing realistic blue carbon benefit assessments. Our work has been foundational for establishing seagrass blue carbon offset projects for the voluntary carbon market.

Key Findings

Restoration reinstates blue carbon stocks

Rates of sediment carbon storage in seagrass meadows restored by seeding is equivalent to natural meadows after a decade (Greiner et al. 2013)
60% of sediment carbon is non-seagrass, either advected into the meadow from adjacent ecosystems or produced in situ (Greiner et al. 2016; Oreska et al. 2017a)

10% of sediment carbon in seagrass meadows is derived from adjacent marshes; 50% benthic microalgae largely produced in situ, not advected into the meadow as previously believed (Greiner et al. 2016; Oreska et al. 2017a)

Drivers of sediment carbon stocks vary on the plot and meadow scales. On the plot scale (m2), meadow age and shoot density determine sediment carbon stocks; at the meadow scale, proximity to the meadow edge is the most important driver (Oreska et al. 2017b)

Seagrass blue carbon sediment stocks are vulnerable to marine heatwaves. A single heatwave caused a 20% loss of sediment carbon; where seagrass meadows were more resilient, this loss was reduced by half (Aoki et al. 2021)

Restoration reinstates blue carbon sequestration in plant biomass

Aquatic eddy covariance measurements made by the Berg Lab at UVA show that:

Seagrass meadows strongly enhance ecosystem metabolism, with rates of primary production and respiration 10-25x higher than adjacent bare sediments (Hume et al. 2011, Rheuban et al. 2014a,b)

Seagrass meadows switch from being a sink to a source of carbon if marine heatwaves cause plant die-off; during recovery, the meadow again becomes a carbon sink (Berger et al. 2020)

In situ measurements show no stimulation of photosynthesis at high CO2 and low O2 concentrations, questioning if seagrass will be ‘winners’ in future oceans (Berg et al. 2019.

Seagrass meadows can offset greenhouse gas emissions

For the first time, all greenhouse gas parameters were measured in a seagrass meadow and we showed that the meadow is a net sink for atmospheric CO2, offsetting 0.42 tCO2e ha−1 yr−1. This is roughly equivalent to the IPCC sequestration rate for seagrass (Oreska et al. 2020)

Increased fluxes of methane by 8x and N2O by 3x partially offsets the greenhouse gas offset benefit of seagrass meadows (Oreska et al. 2020).

We co-authored the international protocol for issuing carbon offset credits in the voluntary carbon market for seagrass restoration administered by Verra (Needleman et al 2018). Working with The Nature Conservancy and TerraCarbon, we are establishing the first seagrass blue carbon offset project in the U.S.

Related Publications

Berger, A., P. Berg, K. McGlathery, M.L. Delgard. 2020. Long-term trends in seagrass metabolism measured by eddy covariance. Limnology and Oceanography.  doi: 10.1002/lno.11397

Berg, P., M. L. Delgard, M.L., P. Polsenaere, K.J. McGlathery, S.C. Doney, and A.C. Berger. 2019. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnology and Oceanography. https://doi.org/10.1002/lno.11236.

Rheuban, J. E., P. Berg, and K. J. McGlathery. 2014a. Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina L.) measured by eddy correlation. Limnology and Oceanography. 59(4): 1376-1387. doi: 10.4319/lo.2014.59.4.1376

Rheuban, J. E., P. Berg, and K. J. McGlathery. 2014b. Seasonal oxygen metabolism in restored Zostera marina meadows measured by eddy correlation. Marine Ecology Progress Series 507: 1-13. doi: 10.3354/meps10843.

Hume, A., P. Berg, and K. J. McGlathery.  2011. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique.  Limnology & Oceanography 56: 86-96.

Berger, A., P. Berg, K. McGlathery, M.L. Delgard. 2020. Long-term trends in seagrass metabolism measured by eddy covariance. Limnology and Oceanography.  doi: 10.1002/lno.11397

Oreska, M.P.J., K.J. McGlathery, L. Aoki, P. Berg, A. Berger. 2020. Net greenhouse gas benefits of the Virginia eelgrass (Zostera marina) restoration: a seagrass blue carbon case study. Nature Scientific Reports. https://doi.org/10.1038/s41598-020-64094-1

Macreadie,, P.I., A. Anton, J.A. Raven, N. Beaumont, R.M. Connolly, D.A. Friess, J.J. Kelleway, H. Kennedy, T. Kuwae, P.S. Lavery, C.E. Lovelock, D.A. Smale, E.T. Apostolaki, T.B. Atwood, J. Baldock, T.S. Bianchi, G.L. Chmura, B.D. Eyre, J.W. Fourqurean, J.M. Hall-Spencer, M. Huxham, I.E. Hendriks, D. Krause-Jensen, D. Laffoley, T. Luisetti, N. Marbà, P. Masque, K.J. McGlathery, P.J. Megonigal, D. Murdiyarso, B.D. Russell, R. Santos, O. Serrano, B.R. Silliman, K. Watanabe, C.M. Duarte. 2019. The future of blue carbon science. Nature Communications. https://doi.org/10.1038/s41467-019-11693-w

Oreska, M. P. J., K. J. McGlathery, R. J. Orth, and D. J. Wilcox.  2019. Seagrass mapping: A survey of recent seagrass distribution literature.  In: L. Windham-Myers, S. Crooks, and T. Troxler (eds.). A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Policy, and Practice. CRC Press, Boca Raton, FL.

Sanderne, V., P.I. Macreadie, D.T. Maher, J.J. Middelburg, O, Serrano, J. Almahasheer, A. Arias-Oriz, M. Cusack, B.D. Eyre, J. Fourqurean, H. Kennedy, D. Krause-Jensen, T. Kuwae, P. Lavery, C.E. Lovelock, N. Marba, P. Masque, M.A. Mateo, I. Mazarrasa, K.J. McGlathery, M.P.J. Oreska, C.J. Sanders, I.R.  2019.  Role of carbonate burial in blue carbon budgets.  Nature Communications. https://doi.org/10.1038/s41467-019-08842-6.

Needelman, B., I. Emmer, S. Emmett-Mattox, S. Crooks, P. Megonigal, D. Meyers, M. Oreska, and K. McGlathery.  2018.  The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration.  Estuaries & Coasts.  41:2159-2171
DOI 10.1007/s12237-018-0429-0

Oreska, M. J. P., K. McGlathery, G. Wilkinson, M. Bost, and B. McKee.  2017a. Allochthonous carbon contributions to seagrass bed blue carbon. Limnology and Oceanography. DOI 10.1002/lno.10718

Oreska, M.P.J., K.J. McGlathery, J.H. Porter, M. Bost, and B.A. McKee.  2017b.  Seagrass blue carbon accumulation at the meadow-scale. PLOS ONE.  
DOI 10.1371/journal.pone.0176630

Oreska, M., K. McGlathery, I. Emmer, B. Needelman, S. Emmett-Mattox, S. Crooks, P. Megonigal, and D. Meyers.  2017c.  Comment on Geoengineering with seagrasses: is credit due where credit is given?  Environmental Research Letters.

Greiner, J. T., G. M. Wilkinson, K. J. McGlathery and K. A. Emery. 2016. Sources of sediment carbon sequestered in restored seagrass meadows.  Marine Ecology Progress Series 551:107-115.

Greiner, J. T., K. J. McGlathery, J. Gunnell, and B. A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters.  PLoS ONE 8(8): e72469. doi:10.1371/journal.pone.0072469

Fourqurean, J. W., C. M. Duarte, H. Kennedy, N. Marba, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. A. Kendrick, D. Krause-Jensen, K. J. McGlathery, and O. Serrano.  2012.  Global carbon stocks in seagrass ecosystems.  Nature – Geosciences.  doi: 10.1038/NGEO1477.